
International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 39

Mathematical Exploration of B2C Electronic Commerce architecture via Back

propagation Network Learning Algorithm

Riktesh Srivastava

Associate Professor, Information Systems

Skyline University College, Sharjah, UAE

riktesh.srivastava@gmail.com

Abstract

The present study assesses the technique of back propagation neural networks to appraise the

average response time of a B2C Electronic Commerce architecture. In order to delineate the

response time, diverse array of user requests were engaged per unit time. Furthermore,

engagement of Back Propagation Network Learning (BPNL) algorithm is used to summarize the

average response time and augment the enactment of the system. The comprehensive study does

the comparative investigation to express the average response time for ANN enabled and

without-ANN-enabled algorithm. The objective was to plaid whether ANN enabled algorithm

had any bearing on the overall performance of the system. For BPNL algorithm, learning of the

responses for the user requests were steered for 7 repetitions and then thorough phases were

accomplished to assess the response time. After each iteration, error rates were dogged and then

feed forward and back propagation algorithm were used to improve the performance. The

experimentation will find its prominence in imminent B2C Electronic Commerce system project

and employment and will convey the outline for such investigation. Finally, the study expands

the meticulous inferences of the study.

Keywords: B2C, Electronic Commerce architecture, BPNL Algorithm, ANN

1. Introduction

The determination of response time for B2C EC architecture is primarily a mathematical

problem. Artificial neural networks are biologically stimulated classification algorithms that

entails of an input layer of nodes, one or more hidden layers and an output layer. Each node in a

layer has one corresponding node in the next layer, thus spawning the stacking effect

(Shrivastava & Singh, 2011). Back propagation Network Learning Algorithm (BPNL) is one of

the prevalent structures amid artificial neural networks which are extensively used to elucidate

International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 40

complex problems by modeling complex input-output relationships (Karimi, Menhaj, & Saboori,

2010).

The preliminary BPNL algorithm was suggested by Rumelhart, Hinton, and Williams

(1988) and since then became prominent learning algorithms for ANN. BPNL uses gradient-

decent search procedure to alter the connection weights. The structure of a BPNL algorithm is

revealed in Figure 2. The output of each neuron is the accumulation of the numbers of neurons of

the previous level multiplied by its corresponding weights. The input values are converted into

output signals with the calculations of activation functions (Hajmeer & Basheer, 2003). BPNL

algorithm has been extensively and efficaciously functional in varied applications, such as

pattern recognition, location selection and performance evaluations.

Press (1997) and Yao (2004) remarks on the diffusion of electronic commerce

architecture with ANN for operative formation of the systems. ANN is the choice for such

diffusion as it does not necessitate any expectations about the distribution of data. Hecht-Nielsen

(1990) premeditated the mathematical analysis of such a diffusion. Research also exhibited that

flexibility and generalization are two most commanding facets of ANN modeling involving

BPNL. Sarle (1995), and Wieland and Leighton (1987) directed that if ANN models are

instigated appropriately in an Electronic Commerce architecture, they are proficient of modeling

complex patterns in data, and they can be pooled with other models to further mend the

performance.

Concerning such a diffusion of ANN and Electronic Commerce architecture,

experimentation conducted in the study expounds the relative stochastic exploration to appraise

the response time of the B2C Electronic Commerce architecture with and without ANN enabled

BPNL algorithm. For BPNL algorithm, 7 recapitulations (training) were steered to train the

entreaties about users probe. BPNL algorithm was developed using Java programming language

and employs both feed forward and back propagation approaches to amend the weights

accordingly.

Complete paper is alienated into 6 sections. Section 2 interprets the B2C Electronic

Commerce architecture used for the study. Section 3 confirms the mathematical exploration of

International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 41

gaging the response time without encompassing BPNL algorithm. Section 4 references the

mathematical valuations for the BPNL algorithm. Section 5 mentions the result investigation

with and without implementing BPNL algorithm. Section 6 explicates the supposition and

impending work to be steered.

2. B2C Electronic Commerce architecture

The proposed B2C Electronic Commerce architecture is an extension to the system of

Client Server Computing. In the architecture, the chore of Web Server is to yield requests from

client and handover it to Application Server. The requests are further conveyed to Database

Servers. So the client using the application is not fretful with the complexities of the Business

logic and is presented the complete web application with supplementary service. Thus, the

architecture offers a momentous workload shift.

In the proposed architecture, the Web server has to no longer do the entire profound

lifting when it comes to running applications. The Application Server and Database Server(s),

hold the impediments of the architecture. Also, the hardware and software demands on the user’s

side dwindle and the web server only executes the architectures interface software. The

comprehensive architecture is depicted in Figure 1.

Figure 1 B2C Electronic Commerce architecture

International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 42

As illustrated in Figure 1, all the clients requests is being established at the Web Server.

Once the requests are received at Web Server, it gets transported to the Application Server for

further dispensation. Application Server spawns the business logic and then requests get

conveyed to the pool of database servers. The study illustrates the employment of the BPNL

algorithm between Application Server and Pool of Database Servers. During the research it was

witnessed that the foremost time of user entreaties was sandwiched between these two servers.

The search of the data in the pool of database server postponements the response time.

Employing and continuously training the requests reduces the response time, enhancing the

overall system performance.

3. Response time of B2C architecture estimations without Neural Networks

As indicated in Figure 1, the requests need to be passed through the three different types

of server. Based on the assumption the total response time is based on the time at each of the

server.

Total Response time=tWS+tAS+tDBS – (1)

However, while conducting the experiment, it was observed that the requests take the

maximum time at the DBS. Upon further investigation, it was observed that the requests take

twice the time at the DBS than at WS and AS together. Keeping the fact in view, equation 1 can

be described as

Total Response time=tWS+tAS+2(tWS+tAS) – (2)

Total Response time=3*tWS+3*tAS – (3)

4. Back Propagation Request Learning (BPNL) Architecture

Figure 2 represents the architecture of a simple Neural Networks. As portrayed in the

Figure, we have one hidden layer, which is associated to the node in output layer. There is

customarily some weights associated with every connection. As depicted in Figure 1, at the input

layer, we get the requests from the client, which is usually the raw information. This raw

information is fed into the network and gets transferred to the hidden layer, as depicted in Figure

2. Hidden layer accepts data from the input layer. It uses input values and modifies them with

International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 43

some weight value, this new value is then send to the output layer but it will also be adjusted by

some weight from connection amongst hidden and output layer. Output layer process

information received from the hidden layer and produces the output. This output is then

processed by activation function.

1

2

i

N

1

2

j

L

K

Wji

Wki

:
:
:
:
:
:
:
:
:

:
:
:
:
:
:
:
:
:
:
:
:

:
:
:
:
:
:
:
:

Input Layer Hidden Layer Output Layer

x1

x2

xi

xN

yk

Figure 2 Neural Network approach for scheduling requests

4.1 Mathematical Evaluation of BPNL Algorithm

The BPNL founds its base on the study piloted by Rojas (2005), which claims that the

complete algorithm should be broken into four stages. After selecting the weights of the network

randomly, the BPNLA is used to compute the necessary corrections. The algorithm can be

decomposed in the following four steps:

1. Feed-forward computation

International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 44

2. Back propagation to the output layer

3. Back propagation to the hidden layer

4. Weight updates

The algorithm is clogged when the assessment of the error function has become

adequately insignificant. This is very rough and rudimentary assumption for BPNL algorithm.

There are some variation but BPNL algorithm based on Rojas (2005) elucidation seems to be

fairly precise and easy to follow. The last step, weight updates is happening throughout the

algorithm.

BPNL algorithm is being assessed based on the number of requests incoming at the Web

Server. The purpose of the algorithm is to accomplish fast response time, after instigating the

BPNL algorithm amid Application Server and Database Server. Employment of BPNL algorithm

for Figure 1 is depicted in Figure 3 as given below:

N0,0

N0,1

N1,0

N1,1

N2,0

Web Server

Input Layer Hidden Layer

Output Layer

W0,0
0.4

W0,2
-0.1

W0,1
0.1

W0,3
-0.1

W1,0
0.06

W1,1
-0.4

Figure 3 Implementation of BPNL Algorithm

International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 45

As displayed in Figure 3, the values of weights are taken randomly and will be

transformed during BPNL iterations. The sigmoid function formula is𝑓(𝑥) =
1.0

1.0+exp(−𝑥)
, with

Learning rate, β=0.45 and Momentum term, α=0.9.

4.2 BPNL Feed Forward computation

Based on sigmoid function formula, 𝑓(𝑥) =
1.0

1.0+exp(−𝑥)
, the feed forward computation for

the Hidden and Output Layers are

𝑁1,0 = 𝑓(𝑥1) = 𝑓(𝑤0,0 ∗ 𝑛0,0 + 𝑤0,1 ∗ 𝑛0,1) = 𝑓(0.4 + 0.1) = 𝑓(0.5) = 0.622459

𝑁1,1 = 𝑓(𝑥2) = 𝑓(𝑤0,2 ∗ 𝑛0,0 + 𝑤0,3 ∗ 𝑛0,1) = 𝑓(0.4 + 0.1) = 𝑓(−0.2) = 0.450166

𝑁2,0 = 𝑓(𝑥3) = 𝑓(𝑤1,0 ∗ 𝑛1,0 + 𝑤1,1 ∗ 𝑛1,1) = 𝑓(0.06 ∗ 0.622459 + (−0.4) ∗ 0.450166)

= 𝑓(−0.1427188) = 0.464381

Computation of N2,0 completes the BPNL feed forward computation.

4.3 BPNL Back propagation to the output Layer

This step gages the error at the node N2,0. Since, the study boards to get the fast response

time, for every search from the web server should give the meticulous result, at the first search at

the Database server. In other words, the output should be always be exact100% ≅ 1, for every

search. The value of N2,0, calculated above is 0.464381.

Error calculation for N2,0

𝑁2,0𝐸𝑟𝑟𝑜𝑟 = 𝑛2,0 ∗ (1 − 𝑛2,0) ∗ (𝑁2,0𝐷𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑁2,0)

= 0.464381(1 − 0.464381) ∗ (1 − 0.464381) = 0.133225

Once, error is computed, it will be used for backward propagation and weights. Error is

broadcasted from the output layer to the hidden layer first, for which learning rate and

momentum is recycled in the equation. So, the weights W1,0 and W1,1 are updated first.

International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 46

∆𝑊1,0 = 𝛽 ∗ 𝑁2,0𝐸𝑟𝑟𝑜𝑟 ∗ 𝑛1,0 = 0.45 ∗ 0.133225 ∗ 0.622459 = 0.037317

Based on the above-mentioned calculation, the value of 𝑊1,0𝑁𝑒𝑤 is as follows:

𝑊1,0𝑁𝑒𝑤 = 𝑤1,0𝑂𝑙𝑑 + ∆𝑊1,0 + (𝛼 ∗ ∆(𝑡 − 1)) = 0.06 + 0.037317 + 0.9 ∗ 0 = 0.097137

∆𝑊1,1 = 𝛽 ∗ 𝑁2,0𝐸𝑟𝑟𝑜𝑟 ∗ 𝑛1,1 = 0.45 ∗ 0.133225 ∗ 0.450166 = 0.026988

𝑊1,1𝑁𝑒𝑤 = 𝑤1,1𝑂𝑙𝑑 + ∆𝑊1,1 + (𝛼 ∗ ∆(𝑡 − 1)) = −0.4 + 0.026988 = −0.373012

 ∆(𝑡 − 1) portrays any preceding delta change of weights, which is always used after the

first iteration. As there is no previous delta value as of now, it is placed as 0. For the next

iteration, the value of ∆(𝑡 − 1) will be updated accordingly.

4.4 BPNL Back propagation to the hidden Layer

This step is used to evaluate the errors propagated from the hidden layer to the input

layer.

𝑁1,0𝐸𝑟𝑟𝑜𝑟 = 𝑁2,0𝐸𝑟𝑟𝑜𝑟 ∗ 𝑊1,0𝑁𝑒𝑤 = 0.133225 ∗ 0.097317 = 0.012965

𝑁1,1𝐸𝑟𝑟𝑜𝑟 = 𝑁2,0𝐸𝑟𝑟𝑜𝑟 ∗ 𝑊1,1𝑁𝑒𝑤 = 0.133225 ∗ (−0.373012) = −0.049706

Once the error for hidden layer is calculated, weights between input and hidden layers

can be updated.

∆𝑊0,0 = 𝛽 ∗ 𝑁1,0𝐸𝑟𝑟𝑜𝑟 ∗ 𝑛0,0 = 0.45 ∗ 0.012965 = 0.005834

∆𝑊0,1 = 𝛽 ∗ 𝑁1,0𝐸𝑟𝑟𝑜𝑟 ∗ 𝑛0,1 = 0.45 ∗ 0.012965 ∗ 1 = 0.005834

∆𝑊0,2 = 𝛽 ∗ 𝑁1,1𝐸𝑟𝑟𝑜𝑟 ∗ 𝑛0,0 = 0.45 ∗ −0.049706 ∗ 1 = −0.022368

∆𝑊0,3 = 𝛽 ∗ 𝑁1,1𝐸𝑟𝑟𝑜𝑟 ∗ 𝑛0,0 = 0.45 ∗ −0.049706 ∗ 1 = −0.022368

International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 47

Thus, we can now calculate the new weights between input and hidden layer, as indicated

below:

𝑊0,0𝑁𝑒𝑤 = 𝑊0,0𝑂𝑙𝑑 + ∆𝑊0,0 + (𝛼 ∗ ∆(𝑡 − 1)) = 0.4 + 0.005834 + 0.9 ∗ 0 = 0.405834

𝑊0,1𝑁𝑒𝑤 = 𝑊0,1𝑂𝑙𝑑 + ∆𝑊0,1 + (𝛼 ∗ ∆(𝑡 − 1)) = 0.1 + 0.005834 + 0 = 0.105834

𝑊0,2𝑁𝑒𝑤 = 𝑊0,2𝑂𝑙𝑑 + ∆𝑊0,2 + (𝛼 ∗ ∆(𝑡 − 1)) = −0.1 + −0.022368 + 0 = −0.122368

𝑊0,3𝑁𝑒𝑤 = 𝑊0,3𝑂𝑙𝑑 + ∆𝑊0,3 + (𝛼 ∗ ∆(𝑡 − 1)) = −0.1 + −0.022368 + 0 = −0.122368

4.5 Final Weight updates (Iterations)

Above mentioned three steps of BPNL algorithm is the first pass of the comprehensive

algorithm. The intention is to obtain the maximum accuracy, so the results are searched at the

first instance from Database server. The study conducted by dspguide.com (Smith, 2001),

illustrates that the number of iterations can be any number between ten to ten thousands. For the

study, seven iterations were followed, to get the result.

The second pass using new weights to check if the error has decreased.

𝑁1,0 = 𝑓(𝑥1) = 𝑓(𝑤0,0 ∗ 𝑛0,0 + 𝑤0,1 ∗ 𝑛0,1) = 𝑓(0.406 + 0.1) = 𝑓(0.506)

= 0.623868314

𝑁1,1 = 𝑓(𝑥2) = 𝑓(𝑤0,2 ∗ 𝑛0,0 + 𝑤0,3 ∗ 𝑛0,1) = 𝑓(−0.122 − 0.122) = 𝑓(−0.244)

= 0.43930085

𝑁2,0 = 𝑓(𝑥3) = 𝑓(𝑤1,0 ∗ 𝑛1,0 + 𝑤1,1 ∗ 𝑛1,1) = 𝑓(0.097 ∗ 0.623868314 + (−0.373))

= 𝑓(−0.103343991) = 0.474186972

Calculating 𝑁2,0 completes the forward pass and now for error calculation of 𝑁2,0 node.

𝑁2,0𝐸𝑟𝑟𝑜𝑟 = 𝑛2,0 ∗ (1 − 𝑛2,0) ∗ (𝑁2,0𝐷𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑁2,0)

= 0.474186972(1 − 0.474186972) ∗ (1 − 0.474186972) = 0.131102901

International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 48

It can be easily checked that the error has decreased and response time is decreased. Next

section depicts the error for 7 iterations of BPNL algorithm.

4.6 Error evaluation

Table 1 given below depicts the 𝑁2,0𝐸𝑟𝑟𝑜𝑟 for next 7 iterations. It can be observed from

the table that the error rate has significantly decreased on the repeated iterations.

Table 1 𝑁2,0𝐸𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 7 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

5. Result Analysis: With and Without Implementing BPNL algorithm

The comprehensive BPNL algorithm is stated in this section, and as indicated adjusts the

weights of the user’s requests using sigmoid function. However the computational exertion

obligatory for finding the correct combination of weights increases substantively when more

strictures and more complicated topologies are deliberated. In the algorithm, sigmoid functions

were used to shrink the overall response time. This method is not only more general than the

usual analytical derivations, but also much easier to follow. It also shows how the algorithm can

be efficiently implemented in B2C Electronic Commerce architecture where the number of

requests arriving at web server is random in nature.

5.1 Generic BPNL Algorithm

1. Initialize weights for the request type (small random numbers)

2. For each training of user requests

3. Repeat until weights convergence or till a required number of epochs are completed

Iterations 𝑵𝟐, 𝟎𝑬𝒓𝒓𝒐𝒓

1 0.133225

2 0.131102

3 0.129762

4 0.114131

5 0.109769

6 0.104476

7 0.101634

International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 49

i. Receive requests as it will be extracted from various queues

ii. Propagate the error backward from output layer to hidden and

input layer.

iii. Calculate new weights in accordance with BPNL algorithm.

4. Replace old weights new weights as taken from training algorithm

i. After every ‘ t’ time units

ii. Measure performance of each requests

iii. Repeat until performance falls below a threshold level(∆) else go

to Step iv.

iv. Set activation of input unit. Inputs to input layer will be actual

packets that are to be scheduled.

v. Compute output of hidden and output layer using sigmoid

activation function

vi. Output will be fed to weight decider module which will calculate

the required change in weights of the queues.

5.2 Algorithm Output

The extensive aftermath of the research piloted is portrayed in Table 2 below:

Table 2 Outcomes of the Experiment

Number

of

requests

Response
Time

without

BPNL
Algorithm

Response
Time with

BPNL

Algorithm
(Training 1)

Response
Time with

BPNL

Algorithm
(Training 2)

Response
Time with

BPNL

Algorithm
(Training 3)

Response
Time with

BPNL

Algorithm
(Training 4)

Response
Time with

BPNL

Algorithm
(Training 5)

Response
Time with

BPNL

Algorithm
(Training 6)

Response
Time with

BPNL

Algorithm
(Training 7)

25 100.65 88.572 81.48624 76.5970656 75.63960228 72.60645423 69.95631865 61.56156041

50 104.71 92.1448 84.773216 79.68682304 78.69073775 75.53523917 72.77820294 64.04481859

75 107.63 94.7144 87.137248 81.90901312 80.88515046 77.64165592 74.80773548 65.83080722

100 109.44 96.3072 88.602624 83.28646656 82.24538573 78.94734576 76.06576764 66.93787552

125 117.21 103.1448 94.893216 89.19962304 88.08462775 84.55243418 81.46627033 71.69031789

150 123.84 108.9792 100.260864 94.24521216 93.06714701 89.33515441 86.07442128 75.74549072

175 149.01 131.1288 120.638496 113.4001862 111.9826839 107.4921783 103.5687138 91.14046813

200 161.54 142.1552 130.782784 122.935817 121.3991192 116.5310146 112.2776325 98.80431663

225 177.05 155.804 143.33968 134.7392992 133.055058 127.7195501 123.0577866 108.2908522

250 181.61 159.8168 147.031456 138.2095686 136.481949 131.0090229 126.2271935 111.0799303

275 190.09 167.2792 153.896864 144.6630522 142.854764 137.126288 132.1211785 116.266637

300 221.32 194.7616 179.180672 168.4298317 166.3244588 159.654848 153.827446 135.3681525

International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 50

The result analysis is illustrated in Figure 4 below:

Figure 4 Result Analysis of the experiment

6. Conclusion and Future Work

As evidently specified in the research that employment of BPNL in B2C Electronic

Commerce architecture profoundly upsurges the systems performance. Figure 4 of section 5

represents the outcomes of the investigation accompanied without BPNL algorithm and after 7th

training using BPNL. Originally, it was pragmatic that BPNL algorithm does not have any

influence on the results, however, incessant training has an inclusive influence on the system.

The study exhibits that the algorithm gives the enhanced consequences with concentrated 300

requests being acknowledged per unit time. The proposed BPNL algorithm was based on

Ergodic condition and permanence was maintained and scrutinized throughout the

implementation of the experimentation. The study is premeditated to be demeanor even advance,

when elevated amount of requests being acknowledged and Service time being assessed

accordingly. BPNL algorithm tangled only 7 autonomous training sets, however, to get a precise

aftermath of the query, the training had to be continual in assortment of 10-1000 iterations,

which is premeditated for the advance version of the system implementation.

International Journal of Business and Innovation. Vol. 1, Issue 4, 2014

IRC Publishers Page | 51

Reference

Hajmeer, MN, & Basheer, IA. (2003). A hybrid Bayesian–neural network approach for

probabilistic modeling of bacterial growth/no-growth interface. International journal of

food microbiology, 82(3), 233-243.

Hecht-Nielsen, R. (1990). Neurocomputing: Reading, MA: Addison-Wesley.

Karimi, B., Menhaj, M. B., & Saboori, I. . (2010). Multilayer feed forward neural networks for

controlling de-centralized large-scale non-affine nonlinear systems with guaranteed

stability. International Journal of Innovative Computing, Information and Control, 6(11),

4825-4841.

Press, Larry. (1997). Tracking the global diffusion on the Internet. Communications of the ACM,

40(11), 11-17.

Rojas, Raúl. (2005). Neutral Networks: A Systematic Introduction: Springer.

Rumelhart, David E, Hinton, Geoffrey E, & Williams, Ronald J. (1988). Learning

representations by back-propagating errors: MIT Press, Cambridge, MA, USA.

Sarle, Warren S. (1995). Stopped training and other remedies for overfitting. Paper presented at

the Proceedings of the 27th Symposium on the Interface of Computing Science and

Statisfi (.'. _\‘. pp. 352-360. Interface Foundation of North America, Fairfax Station. VA,

USA.

Shrivastava, Saurabh, & Singh, Manu Pratap. (2011). Performance evaluation of feed-forward

neural network with soft computing techniques for hand written English alphabets.

Applied Soft Computing, 11(1), 1156-1182.

Smith, Steven W. (2001). Introduction to Neural Networks. from

http://www.dspguide.com/CH26.PDF,

Wieland, As, & Leighton, R. (1987). Geometric analysis of neural network capabilities. Paper

presented at the Proceedings of the Second IEEE International Conference on Nerual

Networks.

Yao, Jingtao. (2004). Ecommerce Adoption of Insurance Companies in New Zealand. J.

Electron. Commerce Res., 5(1), 54-61.

