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Abstract 

The present study assesses the technique of back propagation neural networks to appraise the 

average response time of a B2C Electronic Commerce architecture. In order to delineate the 

response time, diverse array of user requests were engaged per unit time. Furthermore, 

engagement of Back Propagation Network Learning (BPNL) algorithm is used to summarize the 

average response time and augment the enactment of the system. The comprehensive study does 

the comparative investigation to express the average response time for ANN enabled and 

without-ANN-enabled algorithm. The objective was to plaid whether ANN enabled algorithm 

had any bearing on the overall performance of the system. For BPNL algorithm, learning of the 

responses for the user requests were steered for 7 repetitions and then thorough phases were 

accomplished to assess the response time. After each iteration, error rates were dogged and then 

feed forward and back propagation algorithm were used to improve the performance. The 

experimentation will find its prominence in imminent B2C Electronic Commerce system project 

and employment and will convey the outline for such investigation. Finally, the study expands 

the meticulous inferences of the study.  
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1. Introduction 

The determination of response time for B2C EC architecture is primarily a mathematical 

problem. Artificial neural networks are biologically stimulated classification algorithms that 

entails of an input layer of nodes, one or more hidden layers and an output layer. Each node in a 

layer has one corresponding node in the next layer, thus spawning the stacking effect 

(Shrivastava & Singh, 2011).  Back propagation Network Learning Algorithm (BPNL) is one of 

the prevalent structures amid artificial neural networks which are extensively used to elucidate 
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complex problems by modeling complex input-output relationships (Karimi, Menhaj, & Saboori, 

2010). 

The preliminary BPNL algorithm was suggested by Rumelhart, Hinton, and Williams 

(1988) and since then became prominent learning algorithms for ANN. BPNL uses gradient-

decent search procedure to alter the connection weights. The structure of a BPNL algorithm is 

revealed in Figure 2. The output of each neuron is the accumulation of the numbers of neurons of 

the previous level multiplied by its corresponding weights. The input values are converted into 

output signals with the calculations of activation functions (Hajmeer & Basheer, 2003). BPNL 

algorithm has been extensively and efficaciously functional in varied applications, such as 

pattern recognition, location selection and performance evaluations. 

Press (1997) and Yao (2004) remarks on the diffusion of electronic commerce 

architecture with ANN for operative formation of the systems. ANN is the choice for such 

diffusion as it does not necessitate any expectations about the distribution of data. Hecht-Nielsen 

(1990) premeditated the mathematical analysis of such a diffusion. Research also exhibited that 

flexibility and generalization are two most commanding facets of ANN modeling involving 

BPNL. Sarle (1995), and Wieland and Leighton (1987) directed that if ANN models are 

instigated appropriately in an Electronic Commerce architecture, they are proficient of modeling 

complex patterns in data, and they can be pooled with other models to further mend the 

performance.  

Concerning such a diffusion of ANN and Electronic Commerce architecture, 

experimentation conducted in the study expounds the relative stochastic exploration to appraise 

the response time of the B2C Electronic Commerce architecture with and without ANN enabled 

BPNL algorithm. For BPNL algorithm, 7 recapitulations (training) were steered to train the 

entreaties about users probe. BPNL algorithm was developed using Java programming language 

and employs both feed forward and back propagation approaches to amend the weights 

accordingly. 

Complete paper is alienated into 6 sections. Section 2 interprets the B2C Electronic 

Commerce architecture used for the study. Section 3 confirms the mathematical exploration of 
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gaging the response time without encompassing BPNL algorithm. Section 4 references the 

mathematical valuations for the BPNL algorithm. Section 5 mentions the result investigation 

with and without implementing BPNL algorithm. Section 6 explicates the supposition and 

impending work to be steered. 

2. B2C Electronic Commerce architecture 

The proposed B2C Electronic Commerce architecture is an extension to the system of 

Client Server Computing. In the architecture, the chore of Web Server is to yield requests from 

client and handover it to Application Server.  The requests are further conveyed to Database 

Servers. So the client using the application is not fretful with the complexities of the Business 

logic and is presented the complete web application with supplementary service. Thus, the 

architecture offers a momentous workload shift.  

In the proposed architecture, the Web server has to no longer do the entire profound 

lifting when it comes to running applications. The Application Server and Database Server(s), 

hold the impediments of the architecture. Also, the hardware and software demands on the user’s 

side dwindle and the web server only executes the architectures interface software. The 

comprehensive architecture is depicted in Figure 1. 

 

 
Figure 1 B2C Electronic Commerce architecture 
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As illustrated in Figure 1, all the clients requests is being established at the Web Server. 

Once the requests are received at Web Server, it gets transported to the Application Server for 

further dispensation. Application Server spawns the business logic and then requests get 

conveyed to the pool of database servers. The study illustrates the employment of the BPNL 

algorithm between Application Server and Pool of Database Servers. During the research it was 

witnessed that the foremost time of user entreaties was sandwiched between these two servers. 

The search of the data in the pool of database server postponements the response time. 

Employing and continuously training the requests reduces the response time, enhancing the 

overall system performance. 

3. Response time of B2C architecture estimations without Neural Networks 

As indicated in Figure 1, the requests need to be passed through the three different types 

of server. Based on the assumption the total response time is based on the time at each of the 

server.  

Total Response time=tWS+tAS+tDBS                 – (1) 

 

However, while conducting the experiment, it was observed that the requests take the 

maximum time at the DBS. Upon further investigation, it was observed that the requests take 

twice the time at the DBS than at WS and AS together. Keeping the fact in view, equation 1 can 

be described as 

Total Response time=tWS+tAS+2(tWS+tAS)  – (2) 

Total Response time=3*tWS+3*tAS  – (3) 

 

4. Back Propagation Request Learning (BPNL) Architecture 

Figure 2 represents the architecture of a simple Neural Networks. As portrayed in the 

Figure, we have one hidden layer, which is associated to the node in output layer.  There is 

customarily some weights associated with every connection. As depicted in Figure 1, at the input 

layer, we get the requests from the client, which is usually the raw information. This raw 

information is fed into the network and gets transferred to the hidden layer, as depicted in Figure 

2. Hidden layer accepts data from the input layer. It uses input values and modifies them with 
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some weight value, this new value is then send to the output layer but it will also be adjusted by 

some weight from connection amongst hidden and output layer. Output layer process 

information received from the hidden layer and produces the output. This output is then 

processed by activation function.  
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Figure 2 Neural Network approach for scheduling requests 

 

4.1 Mathematical Evaluation of BPNL Algorithm 

The BPNL founds its base on the study piloted by Rojas (2005), which claims that the 

complete algorithm should be broken into four stages. After selecting the weights of the network 

randomly, the BPNLA is used to compute the necessary corrections. The algorithm can be 

decomposed in the following four steps: 

1. Feed-forward computation 
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2. Back propagation to the output layer 

3. Back propagation to the hidden layer 

4. Weight updates 

The algorithm is clogged when the assessment of the error function has become 

adequately insignificant. This is very rough and rudimentary assumption for BPNL algorithm. 

There are some variation but BPNL algorithm based on Rojas (2005) elucidation seems to be 

fairly precise and easy to follow. The last step, weight updates is happening throughout the 

algorithm. 

BPNL algorithm is being assessed based on the number of requests incoming at the Web 

Server. The purpose of the algorithm is to accomplish fast response time, after instigating the 

BPNL algorithm amid Application Server and Database Server. Employment of BPNL algorithm 

for Figure 1 is depicted in Figure 3 as given below: 
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Figure 3 Implementation of BPNL Algorithm 
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As displayed in Figure 3, the values of weights are taken randomly and will be 

transformed during BPNL iterations. The sigmoid function formula is𝑓(𝑥) =
1.0

1.0+exp(−𝑥)
, with 

Learning rate, β=0.45 and Momentum term, α=0.9.  

4.2 BPNL Feed Forward computation 

Based on sigmoid function formula, 𝑓(𝑥) =
1.0

1.0+exp(−𝑥)
, the feed forward computation for 

the Hidden and Output Layers are 

𝑁1,0 = 𝑓(𝑥1) = 𝑓(𝑤0,0 ∗ 𝑛0,0 + 𝑤0,1 ∗ 𝑛0,1) = 𝑓(0.4 + 0.1) = 𝑓(0.5) = 0.622459 

𝑁1,1 = 𝑓(𝑥2) = 𝑓(𝑤0,2 ∗ 𝑛0,0 + 𝑤0,3 ∗ 𝑛0,1) = 𝑓(0.4 + 0.1) = 𝑓(−0.2) = 0.450166 

𝑁2,0 = 𝑓(𝑥3) = 𝑓(𝑤1,0 ∗ 𝑛1,0 + 𝑤1,1 ∗ 𝑛1,1) = 𝑓(0.06 ∗ 0.622459 + (−0.4) ∗ 0.450166)

= 𝑓(−0.1427188) = 0.464381 

Computation of N2,0 completes the BPNL feed forward computation. 

 

4.3 BPNL Back propagation to the output Layer 

This step gages the error at the node N2,0. Since, the study boards to get the fast response 

time, for every search from the web server should give the meticulous result, at the first search at 

the Database server. In other words, the output should be always be exact100% ≅ 1, for every 

search. The value of N2,0, calculated above is 0.464381.  

Error calculation for N2,0 

𝑁2,0𝐸𝑟𝑟𝑜𝑟 = 𝑛2,0 ∗ (1 − 𝑛2,0) ∗ (𝑁2,0𝐷𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑁2,0)

= 0.464381(1 − 0.464381) ∗ (1 − 0.464381) = 0.133225 

Once, error is computed, it will be used for backward propagation and weights. Error is 

broadcasted from the output layer to the hidden layer first, for which learning rate and 

momentum is recycled in the equation. So, the weights W1,0 and W1,1 are updated first.  
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∆𝑊1,0 = 𝛽 ∗ 𝑁2,0𝐸𝑟𝑟𝑜𝑟 ∗ 𝑛1,0 = 0.45 ∗ 0.133225 ∗ 0.622459 = 0.037317 

Based on the above-mentioned calculation, the value of 𝑊1,0𝑁𝑒𝑤 is as follows: 

𝑊1,0𝑁𝑒𝑤 = 𝑤1,0𝑂𝑙𝑑 + ∆𝑊1,0 + (𝛼 ∗ ∆(𝑡 − 1)) = 0.06 + 0.037317 + 0.9 ∗ 0 = 0.097137 

∆𝑊1,1 = 𝛽 ∗ 𝑁2,0𝐸𝑟𝑟𝑜𝑟 ∗ 𝑛1,1 = 0.45 ∗ 0.133225 ∗ 0.450166 = 0.026988 

𝑊1,1𝑁𝑒𝑤 = 𝑤1,1𝑂𝑙𝑑 + ∆𝑊1,1 + (𝛼 ∗ ∆(𝑡 − 1)) = −0.4 + 0.026988 = −0.373012 

 ∆(𝑡 − 1) portrays any preceding delta change of weights, which is always used after the 

first iteration. As there is no previous delta value as of now, it is placed as 0. For the next 

iteration, the value of ∆(𝑡 − 1) will be updated accordingly. 

4.4 BPNL Back propagation to the hidden Layer 

This step is used to evaluate the errors propagated from the hidden layer to the input 

layer.  

𝑁1,0𝐸𝑟𝑟𝑜𝑟 = 𝑁2,0𝐸𝑟𝑟𝑜𝑟 ∗ 𝑊1,0𝑁𝑒𝑤 = 0.133225 ∗ 0.097317 = 0.012965 

𝑁1,1𝐸𝑟𝑟𝑜𝑟 = 𝑁2,0𝐸𝑟𝑟𝑜𝑟 ∗ 𝑊1,1𝑁𝑒𝑤 = 0.133225 ∗ (−0.373012) = −0.049706 

Once the error for hidden layer is calculated, weights between input and hidden layers 

can be updated.  

∆𝑊0,0 = 𝛽 ∗ 𝑁1,0𝐸𝑟𝑟𝑜𝑟 ∗ 𝑛0,0 = 0.45 ∗ 0.012965 = 0.005834 

∆𝑊0,1 = 𝛽 ∗ 𝑁1,0𝐸𝑟𝑟𝑜𝑟 ∗ 𝑛0,1 = 0.45 ∗ 0.012965 ∗ 1 = 0.005834 

∆𝑊0,2 = 𝛽 ∗ 𝑁1,1𝐸𝑟𝑟𝑜𝑟 ∗ 𝑛0,0 = 0.45 ∗ −0.049706 ∗ 1 = −0.022368 

∆𝑊0,3 = 𝛽 ∗ 𝑁1,1𝐸𝑟𝑟𝑜𝑟 ∗ 𝑛0,0 = 0.45 ∗ −0.049706 ∗ 1 = −0.022368 
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Thus, we can now calculate the new weights between input and hidden layer, as indicated 

below: 

𝑊0,0𝑁𝑒𝑤 = 𝑊0,0𝑂𝑙𝑑 + ∆𝑊0,0 + (𝛼 ∗ ∆(𝑡 − 1)) = 0.4 + 0.005834 + 0.9 ∗ 0 = 0.405834 

𝑊0,1𝑁𝑒𝑤 = 𝑊0,1𝑂𝑙𝑑 + ∆𝑊0,1 + (𝛼 ∗ ∆(𝑡 − 1)) = 0.1 + 0.005834 + 0 = 0.105834 

𝑊0,2𝑁𝑒𝑤 = 𝑊0,2𝑂𝑙𝑑 + ∆𝑊0,2 + (𝛼 ∗ ∆(𝑡 − 1)) = −0.1 + −0.022368 + 0 = −0.122368 

𝑊0,3𝑁𝑒𝑤 = 𝑊0,3𝑂𝑙𝑑 + ∆𝑊0,3 + (𝛼 ∗ ∆(𝑡 − 1)) = −0.1 + −0.022368 + 0 = −0.122368 

4.5 Final Weight updates (Iterations) 

Above mentioned three steps of BPNL algorithm is the first pass of the comprehensive 

algorithm. The intention is to obtain the maximum accuracy, so the results are searched at the 

first instance from Database server. The study conducted by dspguide.com (Smith, 2001), 

illustrates that the number of iterations can be any number between ten to ten thousands. For the 

study, seven iterations were followed, to get the result. 

The second pass using new weights to check if the error has decreased. 

𝑁1,0 =  𝑓(𝑥1) = 𝑓(𝑤0,0 ∗ 𝑛0,0 + 𝑤0,1 ∗ 𝑛0,1) = 𝑓(0.406 + 0.1) = 𝑓(0.506)

= 0.623868314 

𝑁1,1 =  𝑓(𝑥2) = 𝑓(𝑤0,2 ∗ 𝑛0,0 + 𝑤0,3 ∗ 𝑛0,1) = 𝑓(−0.122 − 0.122) = 𝑓(−0.244)

= 0.43930085 

𝑁2,0 =  𝑓(𝑥3) = 𝑓(𝑤1,0 ∗ 𝑛1,0 + 𝑤1,1 ∗ 𝑛1,1) = 𝑓(0.097 ∗ 0.623868314 + (−0.373))

= 𝑓(−0.103343991) = 0.474186972 

Calculating 𝑁2,0 completes the forward pass and now for error calculation of 𝑁2,0 node.  

𝑁2,0𝐸𝑟𝑟𝑜𝑟 = 𝑛2,0 ∗ (1 − 𝑛2,0) ∗ (𝑁2,0𝐷𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑁2,0)

= 0.474186972(1 − 0.474186972) ∗ (1 − 0.474186972) = 0.131102901 
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It can be easily checked that the error has decreased and response time is decreased. Next 

section depicts the error for 7 iterations of BPNL algorithm. 

4.6 Error evaluation 

Table 1 given below depicts the 𝑁2,0𝐸𝑟𝑟𝑜𝑟 for next 7 iterations. It can be observed from 

the table that the error rate has significantly decreased on the repeated iterations.  

 

 

 

 

 

 

 

 

 

 

Table 1 𝑁2,0𝐸𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 7 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
 

5. Result Analysis: With and Without Implementing BPNL algorithm 

The comprehensive BPNL algorithm is stated in this section, and as indicated adjusts the 

weights of the user’s requests using sigmoid function. However the computational exertion 

obligatory for finding the correct combination of weights increases substantively when more 

strictures and more complicated topologies are deliberated. In the algorithm, sigmoid functions 

were used to shrink the overall response time. This method is not only more general than the 

usual analytical derivations, but also much easier to follow. It also shows how the algorithm can 

be efficiently implemented in B2C Electronic Commerce architecture where the number of 

requests arriving at web server is random in nature. 

5.1 Generic BPNL Algorithm 

1. Initialize weights for the request type (small random numbers)  

2. For each training of user requests  

3. Repeat until weights convergence or till a required number of epochs are completed  

Iterations 𝑵𝟐, 𝟎𝑬𝒓𝒓𝒐𝒓 

1 0.133225 

2 0.131102 

3 0.129762 

4 0.114131 

5 0.109769 

6 0.104476 

7 0.101634 
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i. Receive requests as it will be extracted from various queues 

ii. Propagate the error backward from output layer to hidden and 

input layer.  

iii. Calculate new weights in accordance with BPNL algorithm.  

4. Replace old weights new weights as taken from training algorithm  

i. After every ‘ t’ time units  

ii. Measure performance of each requests 

iii. Repeat until performance falls below a threshold level(∆) else go 

to Step iv.  

iv. Set activation of input unit. Inputs to input layer will be actual 

packets that are to be scheduled.  

v. Compute output of hidden and output layer using sigmoid 

activation function  

vi. Output will be fed to weight decider module which will calculate 

the required change in weights of the queues.  

5.2 Algorithm Output 

The extensive aftermath of the research piloted is portrayed in Table 2 below: 
 

Table 2 Outcomes of the Experiment 

Number 

of 

requests 

Response 
Time 

without 

BPNL 
Algorithm 

Response 
Time with 

BPNL 

Algorithm 
(Training 1) 

Response 
Time with 

BPNL 

Algorithm 
(Training 2) 

Response 
Time with 

BPNL 

Algorithm 
(Training 3) 

Response 
Time with 

BPNL 

Algorithm 
(Training 4) 

Response 
Time with 

BPNL 

Algorithm 
(Training 5) 

Response 
Time with 

BPNL 

Algorithm 
(Training 6) 

Response 
Time with 

BPNL 

Algorithm 
(Training 7) 

25 100.65 88.572 81.48624 76.5970656 75.63960228 72.60645423 69.95631865 61.56156041 

50 104.71 92.1448 84.773216 79.68682304 78.69073775 75.53523917 72.77820294 64.04481859 

75 107.63 94.7144 87.137248 81.90901312 80.88515046 77.64165592 74.80773548 65.83080722 

100 109.44 96.3072 88.602624 83.28646656 82.24538573 78.94734576 76.06576764 66.93787552 

125 117.21 103.1448 94.893216 89.19962304 88.08462775 84.55243418 81.46627033 71.69031789 

150 123.84 108.9792 100.260864 94.24521216 93.06714701 89.33515441 86.07442128 75.74549072 

175 149.01 131.1288 120.638496 113.4001862 111.9826839 107.4921783 103.5687138 91.14046813 

200 161.54 142.1552 130.782784 122.935817 121.3991192 116.5310146 112.2776325 98.80431663 

225 177.05 155.804 143.33968 134.7392992 133.055058 127.7195501 123.0577866 108.2908522 

250 181.61 159.8168 147.031456 138.2095686 136.481949 131.0090229 126.2271935 111.0799303 

275 190.09 167.2792 153.896864 144.6630522 142.854764 137.126288 132.1211785 116.266637 

300 221.32 194.7616 179.180672 168.4298317 166.3244588 159.654848 153.827446 135.3681525 
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The result analysis is illustrated in Figure 4 below: 
 

 
Figure 4 Result Analysis of the experiment 

 

6. Conclusion and Future Work 

As evidently specified in the research that employment of BPNL in B2C Electronic 

Commerce architecture profoundly upsurges the systems performance. Figure 4 of section 5 

represents the outcomes of the investigation accompanied without BPNL algorithm and after 7th 

training using BPNL. Originally, it was pragmatic that BPNL algorithm does not have any 

influence on the results, however, incessant training has an inclusive influence on the system. 

The study exhibits that the algorithm gives the enhanced consequences with concentrated 300 

requests being acknowledged per unit time. The proposed BPNL algorithm was based on 

Ergodic condition and permanence was maintained and scrutinized throughout the 

implementation of the experimentation. The study is premeditated to be demeanor even advance, 

when elevated amount of requests being acknowledged and Service time being assessed 

accordingly. BPNL algorithm tangled only 7 autonomous training sets, however, to get a precise 

aftermath of the query, the training had to be continual in assortment of 10-1000 iterations, 

which is premeditated for the advance version of the system implementation. 
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